extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C22xD4) = C2xC12:2Q8 | φ: C22xD4/C22xC4 → C2 ⊆ Aut C6 | 192 | | C6.1(C2^2xD4) | 192,1027 |
C6.2(C22xD4) = C2xC4xD12 | φ: C22xD4/C22xC4 → C2 ⊆ Aut C6 | 96 | | C6.2(C2^2xD4) | 192,1032 |
C6.3(C22xD4) = C2xC4:D12 | φ: C22xD4/C22xC4 → C2 ⊆ Aut C6 | 96 | | C6.3(C2^2xD4) | 192,1034 |
C6.4(C22xD4) = C2xC42:7S3 | φ: C22xD4/C22xC4 → C2 ⊆ Aut C6 | 96 | | C6.4(C2^2xD4) | 192,1035 |
C6.5(C22xD4) = C42.276D6 | φ: C22xD4/C22xC4 → C2 ⊆ Aut C6 | 96 | | C6.5(C2^2xD4) | 192,1036 |
C6.6(C22xD4) = C2xD6:D4 | φ: C22xD4/C22xC4 → C2 ⊆ Aut C6 | 48 | | C6.6(C2^2xD4) | 192,1046 |
C6.7(C22xD4) = C2xC23.21D6 | φ: C22xD4/C22xC4 → C2 ⊆ Aut C6 | 96 | | C6.7(C2^2xD4) | 192,1051 |
C6.8(C22xD4) = C23:4D12 | φ: C22xD4/C22xC4 → C2 ⊆ Aut C6 | 48 | | C6.8(C2^2xD4) | 192,1052 |
C6.9(C22xD4) = C2xC12:D4 | φ: C22xD4/C22xC4 → C2 ⊆ Aut C6 | 96 | | C6.9(C2^2xD4) | 192,1065 |
C6.10(C22xD4) = C2xC4.D12 | φ: C22xD4/C22xC4 → C2 ⊆ Aut C6 | 96 | | C6.10(C2^2xD4) | 192,1068 |
C6.11(C22xD4) = C6.2+ 1+4 | φ: C22xD4/C22xC4 → C2 ⊆ Aut C6 | 96 | | C6.11(C2^2xD4) | 192,1069 |
C6.12(C22xD4) = C42:10D6 | φ: C22xD4/C22xC4 → C2 ⊆ Aut C6 | 48 | | C6.12(C2^2xD4) | 192,1083 |
C6.13(C22xD4) = C42:11D6 | φ: C22xD4/C22xC4 → C2 ⊆ Aut C6 | 48 | | C6.13(C2^2xD4) | 192,1084 |
C6.14(C22xD4) = C42.92D6 | φ: C22xD4/C22xC4 → C2 ⊆ Aut C6 | 96 | | C6.14(C2^2xD4) | 192,1085 |
C6.15(C22xD4) = D4xD12 | φ: C22xD4/C22xC4 → C2 ⊆ Aut C6 | 48 | | C6.15(C2^2xD4) | 192,1108 |
C6.16(C22xD4) = D4:5D12 | φ: C22xD4/C22xC4 → C2 ⊆ Aut C6 | 48 | | C6.16(C2^2xD4) | 192,1113 |
C6.17(C22xD4) = D4:6D12 | φ: C22xD4/C22xC4 → C2 ⊆ Aut C6 | 96 | | C6.17(C2^2xD4) | 192,1114 |
C6.18(C22xD4) = Q8xD12 | φ: C22xD4/C22xC4 → C2 ⊆ Aut C6 | 96 | | C6.18(C2^2xD4) | 192,1134 |
C6.19(C22xD4) = Q8:6D12 | φ: C22xD4/C22xC4 → C2 ⊆ Aut C6 | 96 | | C6.19(C2^2xD4) | 192,1135 |
C6.20(C22xD4) = Q8:7D12 | φ: C22xD4/C22xC4 → C2 ⊆ Aut C6 | 96 | | C6.20(C2^2xD4) | 192,1136 |
C6.21(C22xD4) = C22xC24:C2 | φ: C22xD4/C22xC4 → C2 ⊆ Aut C6 | 96 | | C6.21(C2^2xD4) | 192,1298 |
C6.22(C22xD4) = C22xD24 | φ: C22xD4/C22xC4 → C2 ⊆ Aut C6 | 96 | | C6.22(C2^2xD4) | 192,1299 |
C6.23(C22xD4) = C2xC4oD24 | φ: C22xD4/C22xC4 → C2 ⊆ Aut C6 | 96 | | C6.23(C2^2xD4) | 192,1300 |
C6.24(C22xD4) = C22xDic12 | φ: C22xD4/C22xC4 → C2 ⊆ Aut C6 | 192 | | C6.24(C2^2xD4) | 192,1301 |
C6.25(C22xD4) = C2xC8:D6 | φ: C22xD4/C22xC4 → C2 ⊆ Aut C6 | 48 | | C6.25(C2^2xD4) | 192,1305 |
C6.26(C22xD4) = C2xC8.D6 | φ: C22xD4/C22xC4 → C2 ⊆ Aut C6 | 96 | | C6.26(C2^2xD4) | 192,1306 |
C6.27(C22xD4) = C24.9C23 | φ: C22xD4/C22xC4 → C2 ⊆ Aut C6 | 48 | 4 | C6.27(C2^2xD4) | 192,1307 |
C6.28(C22xD4) = D4.11D12 | φ: C22xD4/C22xC4 → C2 ⊆ Aut C6 | 48 | 4 | C6.28(C2^2xD4) | 192,1310 |
C6.29(C22xD4) = D4.12D12 | φ: C22xD4/C22xC4 → C2 ⊆ Aut C6 | 48 | 4+ | C6.29(C2^2xD4) | 192,1311 |
C6.30(C22xD4) = D4.13D12 | φ: C22xD4/C22xC4 → C2 ⊆ Aut C6 | 96 | 4- | C6.30(C2^2xD4) | 192,1312 |
C6.31(C22xD4) = C22xC4:Dic3 | φ: C22xD4/C22xC4 → C2 ⊆ Aut C6 | 192 | | C6.31(C2^2xD4) | 192,1344 |
C6.32(C22xD4) = C2xDic3.D4 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.32(C2^2xD4) | 192,1040 |
C6.33(C22xD4) = C2xS3xC22:C4 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | | C6.33(C2^2xD4) | 192,1043 |
C6.34(C22xD4) = C2xDic3:4D4 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.34(C2^2xD4) | 192,1044 |
C6.35(C22xD4) = C2xC23.9D6 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.35(C2^2xD4) | 192,1047 |
C6.36(C22xD4) = C2xDic3:D4 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.36(C2^2xD4) | 192,1048 |
C6.37(C22xD4) = C24.38D6 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | | C6.37(C2^2xD4) | 192,1049 |
C6.38(C22xD4) = C2xC23.11D6 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.38(C2^2xD4) | 192,1050 |
C6.39(C22xD4) = C2xC12:Q8 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 192 | | C6.39(C2^2xD4) | 192,1056 |
C6.40(C22xD4) = C2xS3xC4:C4 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.40(C2^2xD4) | 192,1060 |
C6.41(C22xD4) = C2xDic3:5D4 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.41(C2^2xD4) | 192,1062 |
C6.42(C22xD4) = C2xD6.D4 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.42(C2^2xD4) | 192,1064 |
C6.43(C22xD4) = C6.2- 1+4 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.43(C2^2xD4) | 192,1066 |
C6.44(C22xD4) = C2xD6:Q8 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.44(C2^2xD4) | 192,1067 |
C6.45(C22xD4) = D4xDic6 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.45(C2^2xD4) | 192,1096 |
C6.46(C22xD4) = C4xS3xD4 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | | C6.46(C2^2xD4) | 192,1103 |
C6.47(C22xD4) = C42:14D6 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | | C6.47(C2^2xD4) | 192,1106 |
C6.48(C22xD4) = C42.228D6 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.48(C2^2xD4) | 192,1107 |
C6.49(C22xD4) = D12:23D4 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | | C6.49(C2^2xD4) | 192,1109 |
C6.50(C22xD4) = D12:24D4 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.50(C2^2xD4) | 192,1110 |
C6.51(C22xD4) = Dic6:23D4 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.51(C2^2xD4) | 192,1111 |
C6.52(C22xD4) = Dic6:24D4 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.52(C2^2xD4) | 192,1112 |
C6.53(C22xD4) = C24.67D6 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | | C6.53(C2^2xD4) | 192,1145 |
C6.54(C22xD4) = S3xC22wrC2 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 24 | | C6.54(C2^2xD4) | 192,1147 |
C6.55(C22xD4) = C24:7D6 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | | C6.55(C2^2xD4) | 192,1148 |
C6.56(C22xD4) = C24:8D6 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | | C6.56(C2^2xD4) | 192,1149 |
C6.57(C22xD4) = C24.44D6 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | | C6.57(C2^2xD4) | 192,1150 |
C6.58(C22xD4) = C24.45D6 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | | C6.58(C2^2xD4) | 192,1151 |
C6.59(C22xD4) = C12:(C4oD4) | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.59(C2^2xD4) | 192,1155 |
C6.60(C22xD4) = C6.322+ 1+4 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.60(C2^2xD4) | 192,1156 |
C6.61(C22xD4) = Dic6:19D4 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.61(C2^2xD4) | 192,1157 |
C6.62(C22xD4) = Dic6:20D4 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.62(C2^2xD4) | 192,1158 |
C6.63(C22xD4) = S3xC4:D4 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | | C6.63(C2^2xD4) | 192,1163 |
C6.64(C22xD4) = C6.372+ 1+4 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | | C6.64(C2^2xD4) | 192,1164 |
C6.65(C22xD4) = C4:C4:21D6 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | | C6.65(C2^2xD4) | 192,1165 |
C6.66(C22xD4) = C6.382+ 1+4 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | | C6.66(C2^2xD4) | 192,1166 |
C6.67(C22xD4) = C6.722- 1+4 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.67(C2^2xD4) | 192,1167 |
C6.68(C22xD4) = D12:19D4 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | | C6.68(C2^2xD4) | 192,1168 |
C6.69(C22xD4) = C6.402+ 1+4 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | | C6.69(C2^2xD4) | 192,1169 |
C6.70(C22xD4) = C6.732- 1+4 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.70(C2^2xD4) | 192,1170 |
C6.71(C22xD4) = D12:20D4 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | | C6.71(C2^2xD4) | 192,1171 |
C6.72(C22xD4) = S3xC22:Q8 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | | C6.72(C2^2xD4) | 192,1185 |
C6.73(C22xD4) = C4:C4:26D6 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | | C6.73(C2^2xD4) | 192,1186 |
C6.74(C22xD4) = C6.162- 1+4 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.74(C2^2xD4) | 192,1187 |
C6.75(C22xD4) = C6.172- 1+4 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.75(C2^2xD4) | 192,1188 |
C6.76(C22xD4) = D12:21D4 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | | C6.76(C2^2xD4) | 192,1189 |
C6.77(C22xD4) = D12:22D4 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.77(C2^2xD4) | 192,1190 |
C6.78(C22xD4) = Dic6:21D4 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.78(C2^2xD4) | 192,1191 |
C6.79(C22xD4) = Dic6:22D4 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.79(C2^2xD4) | 192,1192 |
C6.80(C22xD4) = C6.792- 1+4 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.80(C2^2xD4) | 192,1207 |
C6.81(C22xD4) = S3xC22.D4 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | | C6.81(C2^2xD4) | 192,1211 |
C6.82(C22xD4) = C6.1202+ 1+4 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | | C6.82(C2^2xD4) | 192,1212 |
C6.83(C22xD4) = C6.1212+ 1+4 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | | C6.83(C2^2xD4) | 192,1213 |
C6.84(C22xD4) = C6.822- 1+4 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.84(C2^2xD4) | 192,1214 |
C6.85(C22xD4) = C4:C4:28D6 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | | C6.85(C2^2xD4) | 192,1215 |
C6.86(C22xD4) = C42.233D6 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.86(C2^2xD4) | 192,1227 |
C6.87(C22xD4) = S3xC4.4D4 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | | C6.87(C2^2xD4) | 192,1232 |
C6.88(C22xD4) = C42:20D6 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | | C6.88(C2^2xD4) | 192,1233 |
C6.89(C22xD4) = C42.141D6 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.89(C2^2xD4) | 192,1234 |
C6.90(C22xD4) = D12:10D4 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | | C6.90(C2^2xD4) | 192,1235 |
C6.91(C22xD4) = Dic6:10D4 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.91(C2^2xD4) | 192,1236 |
C6.92(C22xD4) = S3xC4:1D4 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | | C6.92(C2^2xD4) | 192,1273 |
C6.93(C22xD4) = C42:28D6 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | | C6.93(C2^2xD4) | 192,1274 |
C6.94(C22xD4) = C42.238D6 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.94(C2^2xD4) | 192,1275 |
C6.95(C22xD4) = D12:11D4 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | | C6.95(C2^2xD4) | 192,1276 |
C6.96(C22xD4) = Dic6:11D4 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.96(C2^2xD4) | 192,1277 |
C6.97(C22xD4) = S3xC4:Q8 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.97(C2^2xD4) | 192,1282 |
C6.98(C22xD4) = C42.171D6 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.98(C2^2xD4) | 192,1283 |
C6.99(C22xD4) = C42.240D6 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.99(C2^2xD4) | 192,1284 |
C6.100(C22xD4) = D12:12D4 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.100(C2^2xD4) | 192,1285 |
C6.101(C22xD4) = D12:8Q8 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.101(C2^2xD4) | 192,1286 |
C6.102(C22xD4) = C2xS3xD8 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | | C6.102(C2^2xD4) | 192,1313 |
C6.103(C22xD4) = C2xD8:S3 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | | C6.103(C2^2xD4) | 192,1314 |
C6.104(C22xD4) = C2xD8:3S3 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.104(C2^2xD4) | 192,1315 |
C6.105(C22xD4) = D8:13D6 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | 4 | C6.105(C2^2xD4) | 192,1316 |
C6.106(C22xD4) = C2xS3xSD16 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | | C6.106(C2^2xD4) | 192,1317 |
C6.107(C22xD4) = C2xQ8:3D6 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | | C6.107(C2^2xD4) | 192,1318 |
C6.108(C22xD4) = C2xD4.D6 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.108(C2^2xD4) | 192,1319 |
C6.109(C22xD4) = C2xQ8.7D6 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.109(C2^2xD4) | 192,1320 |
C6.110(C22xD4) = SD16:13D6 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | 4 | C6.110(C2^2xD4) | 192,1321 |
C6.111(C22xD4) = C2xS3xQ16 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.111(C2^2xD4) | 192,1322 |
C6.112(C22xD4) = C2xQ16:S3 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.112(C2^2xD4) | 192,1323 |
C6.113(C22xD4) = C2xD24:C2 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.113(C2^2xD4) | 192,1324 |
C6.114(C22xD4) = D12.30D4 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | 4 | C6.114(C2^2xD4) | 192,1325 |
C6.115(C22xD4) = S3xC4oD8 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | 4 | C6.115(C2^2xD4) | 192,1326 |
C6.116(C22xD4) = SD16:D6 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | 4 | C6.116(C2^2xD4) | 192,1327 |
C6.117(C22xD4) = D8:15D6 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | 4+ | C6.117(C2^2xD4) | 192,1328 |
C6.118(C22xD4) = D8:11D6 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | 4 | C6.118(C2^2xD4) | 192,1329 |
C6.119(C22xD4) = D8.10D6 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | 4- | C6.119(C2^2xD4) | 192,1330 |
C6.120(C22xD4) = S3xC8:C22 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 24 | 8+ | C6.120(C2^2xD4) | 192,1331 |
C6.121(C22xD4) = D8:4D6 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | 8- | C6.121(C2^2xD4) | 192,1332 |
C6.122(C22xD4) = D8:5D6 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | 8+ | C6.122(C2^2xD4) | 192,1333 |
C6.123(C22xD4) = D8:6D6 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | 8- | C6.123(C2^2xD4) | 192,1334 |
C6.124(C22xD4) = S3xC8.C22 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | 8- | C6.124(C2^2xD4) | 192,1335 |
C6.125(C22xD4) = D24:C22 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | 8+ | C6.125(C2^2xD4) | 192,1336 |
C6.126(C22xD4) = C24.C23 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 48 | 8+ | C6.126(C2^2xD4) | 192,1337 |
C6.127(C22xD4) = SD16.D6 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | 8- | C6.127(C2^2xD4) | 192,1338 |
C6.128(C22xD4) = C2xD4xDic3 | φ: C22xD4/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.128(C2^2xD4) | 192,1354 |
C6.129(C22xD4) = C22xDic3:C4 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 192 | | C6.129(C2^2xD4) | 192,1342 |
C6.130(C22xD4) = C2xC12.48D4 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 96 | | C6.130(C2^2xD4) | 192,1343 |
C6.131(C22xD4) = C22xD6:C4 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 96 | | C6.131(C2^2xD4) | 192,1346 |
C6.132(C22xD4) = C2xC4xC3:D4 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 96 | | C6.132(C2^2xD4) | 192,1347 |
C6.133(C22xD4) = C2xC23.28D6 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 96 | | C6.133(C2^2xD4) | 192,1348 |
C6.134(C22xD4) = C2xC12:7D4 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 96 | | C6.134(C2^2xD4) | 192,1349 |
C6.135(C22xD4) = C24.83D6 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 48 | | C6.135(C2^2xD4) | 192,1350 |
C6.136(C22xD4) = C22xD4:S3 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 96 | | C6.136(C2^2xD4) | 192,1351 |
C6.137(C22xD4) = C2xD12:6C22 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 48 | | C6.137(C2^2xD4) | 192,1352 |
C6.138(C22xD4) = C22xD4.S3 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 96 | | C6.138(C2^2xD4) | 192,1353 |
C6.139(C22xD4) = C2xC23.23D6 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 96 | | C6.139(C2^2xD4) | 192,1355 |
C6.140(C22xD4) = C2xC23.12D6 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 96 | | C6.140(C2^2xD4) | 192,1356 |
C6.141(C22xD4) = C2xC23:2D6 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 48 | | C6.141(C2^2xD4) | 192,1358 |
C6.142(C22xD4) = C2xD6:3D4 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 96 | | C6.142(C2^2xD4) | 192,1359 |
C6.143(C22xD4) = D4xC3:D4 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 48 | | C6.143(C2^2xD4) | 192,1360 |
C6.144(C22xD4) = C2xC23.14D6 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 96 | | C6.144(C2^2xD4) | 192,1361 |
C6.145(C22xD4) = C2xC12:3D4 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 96 | | C6.145(C2^2xD4) | 192,1362 |
C6.146(C22xD4) = C24:12D6 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 48 | | C6.146(C2^2xD4) | 192,1363 |
C6.147(C22xD4) = C24.52D6 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 48 | | C6.147(C2^2xD4) | 192,1364 |
C6.148(C22xD4) = C24.53D6 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 48 | | C6.148(C2^2xD4) | 192,1365 |
C6.149(C22xD4) = C22xQ8:2S3 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 96 | | C6.149(C2^2xD4) | 192,1366 |
C6.150(C22xD4) = C2xQ8.11D6 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 96 | | C6.150(C2^2xD4) | 192,1367 |
C6.151(C22xD4) = C22xC3:Q16 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 192 | | C6.151(C2^2xD4) | 192,1368 |
C6.152(C22xD4) = C2xDic3:Q8 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 192 | | C6.152(C2^2xD4) | 192,1369 |
C6.153(C22xD4) = C2xD6:3Q8 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 96 | | C6.153(C2^2xD4) | 192,1372 |
C6.154(C22xD4) = C2xC12.23D4 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 96 | | C6.154(C2^2xD4) | 192,1373 |
C6.155(C22xD4) = Q8xC3:D4 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 96 | | C6.155(C2^2xD4) | 192,1374 |
C6.156(C22xD4) = C6.442- 1+4 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 96 | | C6.156(C2^2xD4) | 192,1375 |
C6.157(C22xD4) = C6.452- 1+4 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 96 | | C6.157(C2^2xD4) | 192,1376 |
C6.158(C22xD4) = C2xD4:D6 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 48 | | C6.158(C2^2xD4) | 192,1379 |
C6.159(C22xD4) = C2xQ8.13D6 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 96 | | C6.159(C2^2xD4) | 192,1380 |
C6.160(C22xD4) = C12.C24 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 48 | 4 | C6.160(C2^2xD4) | 192,1381 |
C6.161(C22xD4) = C2xQ8.14D6 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 96 | | C6.161(C2^2xD4) | 192,1382 |
C6.162(C22xD4) = C6.1042- 1+4 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 96 | | C6.162(C2^2xD4) | 192,1383 |
C6.163(C22xD4) = C6.1052- 1+4 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 96 | | C6.163(C2^2xD4) | 192,1384 |
C6.164(C22xD4) = (C2xD4):43D6 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 48 | | C6.164(C2^2xD4) | 192,1387 |
C6.165(C22xD4) = C6.1452+ 1+4 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 48 | | C6.165(C2^2xD4) | 192,1388 |
C6.166(C22xD4) = C6.1462+ 1+4 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 48 | | C6.166(C2^2xD4) | 192,1389 |
C6.167(C22xD4) = C6.1072- 1+4 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 96 | | C6.167(C2^2xD4) | 192,1390 |
C6.168(C22xD4) = (C2xC12):17D4 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 96 | | C6.168(C2^2xD4) | 192,1391 |
C6.169(C22xD4) = C6.1082- 1+4 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 96 | | C6.169(C2^2xD4) | 192,1392 |
C6.170(C22xD4) = C6.1482+ 1+4 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 96 | | C6.170(C2^2xD4) | 192,1393 |
C6.171(C22xD4) = D12.32C23 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 48 | 8+ | C6.171(C2^2xD4) | 192,1394 |
C6.172(C22xD4) = D12.33C23 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 48 | 8- | C6.172(C2^2xD4) | 192,1395 |
C6.173(C22xD4) = D12.34C23 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 48 | 8+ | C6.173(C2^2xD4) | 192,1396 |
C6.174(C22xD4) = D12.35C23 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 96 | 8- | C6.174(C2^2xD4) | 192,1397 |
C6.175(C22xD4) = C22xC6.D4 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 96 | | C6.175(C2^2xD4) | 192,1398 |
C6.176(C22xD4) = C2xC24:4S3 | φ: C22xD4/C24 → C2 ⊆ Aut C6 | 48 | | C6.176(C2^2xD4) | 192,1399 |
C6.177(C22xD4) = C2xC6xC22:C4 | central extension (φ=1) | 96 | | C6.177(C2^2xD4) | 192,1401 |
C6.178(C22xD4) = C2xC6xC4:C4 | central extension (φ=1) | 192 | | C6.178(C2^2xD4) | 192,1402 |
C6.179(C22xD4) = D4xC2xC12 | central extension (φ=1) | 96 | | C6.179(C2^2xD4) | 192,1404 |
C6.180(C22xD4) = C6xC22wrC2 | central extension (φ=1) | 48 | | C6.180(C2^2xD4) | 192,1410 |
C6.181(C22xD4) = C6xC4:D4 | central extension (φ=1) | 96 | | C6.181(C2^2xD4) | 192,1411 |
C6.182(C22xD4) = C6xC22:Q8 | central extension (φ=1) | 96 | | C6.182(C2^2xD4) | 192,1412 |
C6.183(C22xD4) = C6xC22.D4 | central extension (φ=1) | 96 | | C6.183(C2^2xD4) | 192,1413 |
C6.184(C22xD4) = C3xC22.19C24 | central extension (φ=1) | 48 | | C6.184(C2^2xD4) | 192,1414 |
C6.185(C22xD4) = C6xC4.4D4 | central extension (φ=1) | 96 | | C6.185(C2^2xD4) | 192,1415 |
C6.186(C22xD4) = C6xC4:1D4 | central extension (φ=1) | 96 | | C6.186(C2^2xD4) | 192,1419 |
C6.187(C22xD4) = C6xC4:Q8 | central extension (φ=1) | 192 | | C6.187(C2^2xD4) | 192,1420 |
C6.188(C22xD4) = C3xC22.26C24 | central extension (φ=1) | 96 | | C6.188(C2^2xD4) | 192,1421 |
C6.189(C22xD4) = C3xC23:3D4 | central extension (φ=1) | 48 | | C6.189(C2^2xD4) | 192,1423 |
C6.190(C22xD4) = C3xC22.29C24 | central extension (φ=1) | 48 | | C6.190(C2^2xD4) | 192,1424 |
C6.191(C22xD4) = C3xC23.38C23 | central extension (φ=1) | 96 | | C6.191(C2^2xD4) | 192,1425 |
C6.192(C22xD4) = C3xC22.31C24 | central extension (φ=1) | 96 | | C6.192(C2^2xD4) | 192,1426 |
C6.193(C22xD4) = C3xD42 | central extension (φ=1) | 48 | | C6.193(C2^2xD4) | 192,1434 |
C6.194(C22xD4) = C3xD4:5D4 | central extension (φ=1) | 48 | | C6.194(C2^2xD4) | 192,1435 |
C6.195(C22xD4) = C3xD4:6D4 | central extension (φ=1) | 96 | | C6.195(C2^2xD4) | 192,1436 |
C6.196(C22xD4) = C3xQ8:5D4 | central extension (φ=1) | 96 | | C6.196(C2^2xD4) | 192,1437 |
C6.197(C22xD4) = C3xD4xQ8 | central extension (φ=1) | 96 | | C6.197(C2^2xD4) | 192,1438 |
C6.198(C22xD4) = C3xQ8:6D4 | central extension (φ=1) | 96 | | C6.198(C2^2xD4) | 192,1439 |
C6.199(C22xD4) = C2xC6xD8 | central extension (φ=1) | 96 | | C6.199(C2^2xD4) | 192,1458 |
C6.200(C22xD4) = C2xC6xSD16 | central extension (φ=1) | 96 | | C6.200(C2^2xD4) | 192,1459 |
C6.201(C22xD4) = C2xC6xQ16 | central extension (φ=1) | 192 | | C6.201(C2^2xD4) | 192,1460 |
C6.202(C22xD4) = C6xC4oD8 | central extension (φ=1) | 96 | | C6.202(C2^2xD4) | 192,1461 |
C6.203(C22xD4) = C6xC8:C22 | central extension (φ=1) | 48 | | C6.203(C2^2xD4) | 192,1462 |
C6.204(C22xD4) = C6xC8.C22 | central extension (φ=1) | 96 | | C6.204(C2^2xD4) | 192,1463 |
C6.205(C22xD4) = C3xD8:C22 | central extension (φ=1) | 48 | 4 | C6.205(C2^2xD4) | 192,1464 |
C6.206(C22xD4) = C3xD4oD8 | central extension (φ=1) | 48 | 4 | C6.206(C2^2xD4) | 192,1465 |
C6.207(C22xD4) = C3xD4oSD16 | central extension (φ=1) | 48 | 4 | C6.207(C2^2xD4) | 192,1466 |
C6.208(C22xD4) = C3xQ8oD8 | central extension (φ=1) | 96 | 4 | C6.208(C2^2xD4) | 192,1467 |